Equatorial Assembly of the Cell-Division Actomyosin Ring in the Absence of Cytokinetic Spatial Cues

نویسندگان

  • Tzer Chyn Lim
  • Tomoyuki Hatano
  • Anton Kamnev
  • Mohan K. Balasubramanian
  • Ting Gang Chew
چکیده

The position of the division site dictates the size and fate of daughter cells in many organisms. In animal cells, division-site placement involves overlapping mechanisms, including signaling from the central spindle microtubules, astral microtubules, and spindle poles and through polar contractions [1-3]. In fission yeast, division-site positioning requires overlapping mechanisms involving the anillin-related protein Mid1 and the tip complex (comprising the Kelch-repeat protein Tea1, the Dyrk-kinase Pom1, and the SH3-domain protein Tea4) [4-11]. In addition to these factors, cell shape has also been shown to participate in the maintenance of the position of the actomyosin ring [12-14]. The first principles guiding actomyosin ring placement, however, have not been elucidated in any organism. Because actomyosin ring positioning, ring assembly, and cell morphogenesis are genetically separable in fission yeast, we have used it to derive actomyosin ring placement mechanisms from first principles. We report that, during ring assembly in the absence of cytokinetic cues (anillin-related Mid1 and tip-complex proteins), actin bundles follow the path of least curvature and assemble actomyosin rings in an equatorial position in spherical protoplasts and along the long axis in cylindrical cells and compressed protoplasts. The equatorial position of rings is abolished upon treatment of protoplasts with an actin-severing compound or by slowing down actin polymerization. We propose that the physical properties of actin filaments/bundles play key roles in actomyosin ring assembly and positioning, and that key cytokinetic molecules may modulate the length of actin filaments to promote ring assembly along the short axis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Equatorial Contractile Mechanism Drives Cell Elongation but not Cell Division

Cell shape changes and proliferation are two fundamental strategies for morphogenesis in animal development. During embryogenesis of the simple chordate Ciona intestinalis, elongation of individual notochord cells constitutes a crucial stage of notochord growth, which contributes to the establishment of the larval body plan. The mechanism of cell elongation is elusive. Here we show that althoug...

متن کامل

Rewiring Mid1p-Independent Medial Division in Fission Yeast

Correct positioning of the cell division machinery is key to genome stability. Schizosaccharomyces pombe is an attractive organism to study cytokinesis as it, like higher eukaryotes, divides using a contractile actomyosin ring. In S. pombe, many actomyosin ring components assemble at the medial cortex into node-like structures before coalescing into a ring [1, 2]. Assembly of cytokinetic nodes ...

متن کامل

SIN-dependent phosphoinhibition of formin multimerization controls fission yeast cytokinesis.

Many eukaryotes accomplish cell division by building and constricting a medial actomyosin-based cytokinetic ring (CR). In Schizosaccharomyces pombe, a Hippo-related signaling pathway termed the septation initiation network (SIN) controls CR formation, maintenance, and constriction. However, how the SIN regulates integral CR components was unknown. Here, we identify the essential cytokinetic for...

متن کامل

Annexin A2 is required for the early steps of cytokinesis.

Cytokinesis requires the formation of an actomyosin contractile ring between the two sets of sister chromatids. Annexin A2 is a calcium- and phospholipid-binding protein implicated in cortical actin remodeling. We report that annexin A2 accumulates at the equatorial cortex at the onset of cytokinesis and depletion of annexin A2 results in cytokinetic failure, due to a defective cleavage furrow ...

متن کامل

Spatial coordination of cytokinetic events by compartmentalization of the cell cortex.

During cytokinesis, furrow ingression and plasma membrane fission irreversibly separate daughter cells. How actomyosin ring assembly and contraction, vesicle fusion, and abscission are spatially coordinated was unknown. We found that during cytokinesis septin rings, located on both sides of the actomyosin ring, acted as barriers to compartmentalize the cortex around the cleavage site. Compartme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2018